А Pages: 3 Reg No.: Name: APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY First Semester B.Tech Degree Regular and Supplementary Examination December 2020 (2019 Scheme) **Course Code: MAT101 Course Name: LINEAR ALGEBRA AND CALCULUS** (2019 Scheme) Max. Marks: 100 **Duration: 3 Hours** PART A Marks Answer all questions, each carries 3 marks. Find the rank of the matrix $\begin{bmatrix} 1 & 2 & -1 & 3 \\ 2 & 2 & 4 & 1 \\ 5 & 6 & 7 & 5 \end{bmatrix}$ 1 (3)2 What type of conic section the following quadratic form represent? (3) $Q = 17x_1^2 - 30x_1x_2 + 17x_2^2 = 128$ If $U = \frac{x^3 + y^3}{x - y}$, find $\frac{\partial U}{\partial x} + \frac{\partial U}{\partial y}$. 3 (3)If $z = x^2 y$; $x = t^2$, $y = t^3$ find $\frac{dz}{dt}$ using chain rule. 4 (3)Evaluate $\int_{0}^{3} \int_{0}^{21} xyz \, dx \, dy \, dz$ 5 (3)6 Use double integrals to find the volume of the solid enclosed below the plane z = 4 - x - y and above the rectangle $R = \{(x, y); 0 \le x \le 1, 0 \le y \le 2\}$. (3)Does the series $\sum_{k=1}^{\infty} \left(\frac{4}{5}\right)^k$ converge? If so, find the sum. 7 (3)Test the convergence of the series $\sum_{k=1}^{\infty} \frac{k^2}{2k^2 - 1}$ 8 (3)Find the binomial series for $f(x) = \frac{1}{\sqrt{1+x}}$ up to third degree term. 9 (3)Find the Maclaurin's series for $f(x) = x \cos x$ up to third degree term. 10 (3)

01MAT101121903-B

PART B

Answer one full question from each module, each question carries 14 marks

Module-I

- 11 a) Using Gauss elimination method find the solution of the system x + y - z = 9, 8y + 6z = -6, -2x + 4y - 6z = 40(7)
 - b) Find the matrix of transformation that diagonalize the matrix

$$\begin{bmatrix} 3 & 1 & -1 \\ -2 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$
. Also, find the diagonal matrix. (7)

12 a) Find the value of λ and μ for which the system of equations 2x + 3y + 5z = 9 7x + 3y - 2z = 8 $2x + 3y + \lambda z = \mu$ (7) has (a) no solution (b) unique solution (c) more than one solution

b) Find the eigen values and eigen vectors for the matrix $\begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$ (7)

Module-II

13 a) If
$$w = \sqrt{x^2 + y^2 + z^2}$$
, $x = \cos\theta$, $y = \sin\theta$, $z = \tan\theta$,
find $\frac{dw}{d\theta}$ at $\theta = \frac{\pi}{4}$ (7)

b) Find the local linear approximation L of f(x, y, z) = x y z at the point P(1,2,3). Compute the error in approximation f by L at the point (7) Q(1.001,2.002,3.003).

14 a) Locate all relative extrema of
$$f(x, y) = x^3 y^2 (12 - x - y)$$
 (7)

b) Let f be a differentiable function of three variables and suppose that w = f(x - y, y - z, z - x), show that $\frac{\partial w}{\partial x} + \frac{\partial w}{\partial y} + \frac{\partial w}{\partial z} = 0$ (7)

Module-III

15 a) Find the area bounded by the x - axis, y = 2x, x + y = 1. (7)

b) Change the order of integration and hence evaluate
$$\int_{0}^{1} \int_{x^{2}}^{2-x} dy dx$$
 (7)

16 a) Find the volume bounded by the cylinder $x^2 + y^2 = 9$ and the planes y + z = 3 and z = 0(7)

01МАТ101121903-В

b) Find the mass and centre of gravity of the lamina in the first quadrant bounded by the circle $x^2 + y^2 = 1$ and the coordinate planes with density function xy. (7)

Module-IV

17
a) Test the convergence
$$i \sum_{k=1}^{\infty} \frac{k(k-1)}{(k+1)(k+2)(k+3)} = ii \sum_{k=1}^{\infty} \left(\frac{k+2}{2k-1}\right)^k$$

b) Test whether the following series is absolutely convergent or conditionally
convergent.
$$\sum_{k=1}^{\infty} \frac{(-1)^k}{\sqrt{k(k+1)}}$$
(7)

(7)

¹⁸ a) Test the convergence of the series
$$1 + \frac{1.3}{1.2} + \frac{1.3.5}{1.2.3} + \frac{1.3.5.7}{1.2.3.4} + \dots$$
 (7)

b) Test the convergence:
$$(i)\sum_{k=1}^{\infty} \frac{2}{3^k + 5}$$
 $(ii)\sum_{k=1}^{\infty} (-1)^{k+1} \left(\frac{k}{2k+3}\right)$ (7)

Module-V

19

a) Find the Fourier series of
$$f(x) = \begin{cases} 1 + \frac{2x}{\pi}, -\pi < x < 0\\ 1 - \frac{2x}{\pi}, 0 < x < \pi \end{cases}$$
(7)

- b) Obtain Fourier series of e^x the interval (-1,1) (7)
- 20 a) Find the Fourier series $f(x) = x^2 2$ in the interval (-2,2) (7)
 - b) Find the Fourier cosine series of $f(x) = x^2$ in $0 < x < \pi$. (7)
