\qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

First Semester B.Tech Degree Regular and Supplementary Examination December 2020 (2019 Scheme)

Course Code: MAT101

Course Name: LINEAR ALGEBRA AND CALCULUS (2019 Scheme)

PART A

Answer all questions, each carries 3 marks.
Duration: 3 Hours

1 Find the rank of the matrix $\left[\begin{array}{cccc}1 & 2 & -1 & 3 \\ 2 & 2 & 4 & 1 \\ 5 & 6 & 7 & 5\end{array}\right]$
2 What type of conic section the following quadratic form represent?
$Q=17 x_{1}^{2}-30 x_{1} x_{2}+17 x_{2}^{2}=128$

3
If $U=\frac{x^{3}+y^{3}}{x-y}$, find $\frac{\partial U}{\partial x}+\frac{\partial U}{\partial y}$.
4 If $z=x^{2} y ; x=t^{2}, y=t^{3}$ find $\frac{d z}{d t}$ using chain rule.
5 Evaluate $\int_{0}^{3} \int_{0}^{2} \int_{0}^{1} x y z d x d y d z$
6 Use double integrals to find the volume of the solid enclosed below the plane
$z=4-x-y$ and above the rectangle $R=\{(x, y) ; 0 \leq x \leq 1,0 \leq y \leq 2\}$.

7 Does the series $\sum_{k=1}^{\infty}\left(\frac{4}{5}\right)^{k}$ converge? If so, find the sum.
$8 \quad$ Test the convergence of the series $\sum_{k=1}^{\infty} \frac{k^{2}}{2 k^{2}-1}$
9 Find the binomial series for $f(x)=\frac{1}{\sqrt{1+x}}$ up to third degree term.
10 Find the Maclaurin's series for $f(x)=x \cos x$ up to third degree term.

PART B
Answer one full question from each module, each question carries 14 marks

Module-I

11 a) Using Gauss elimination method find the solution of the system $x+y-z=9,8 y+6 z=-6,-2 x+4 y-6 z=40$
b) Find the matrix of transformation that diagonalize the matrix
$\left[\begin{array}{ccc}3 & 1 & -1 \\ -2 & 1 & 2 \\ 0 & 1 & 2\end{array}\right]$. Also, find the diagonal matrix.
12 a) Find the value of λ and μ for which the system of equations
$2 x+3 y+5 z=9 \quad 7 x+3 y-2 z=8 \quad 2 x+3 y+\lambda z=\mu$
has (a) no solution (b) unique solution (c) more than one solution
b) Find the eigen values and eigen vectors for the matrix $\left[\begin{array}{ccc}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right]$

Module-II

13
a) If $w=\sqrt{x^{2}+y^{2}+z^{2}}, x=\cos \theta, y=\sin \theta, z=\tan \theta$, find $\frac{d w}{d \theta}$ at $\theta=\frac{\pi}{4}$
b) Find the local linear approximation L of $f(x, y, z)=x y z$ at the point $P(1,2,3)$. Compute the error in approximation f by L at the point $Q(1.001,2.002,3.003)$.
14 a) Locate all relative extrema of $f(x, y)=x^{3} y^{2}(12-x-y)$
b) Let f be a differentiable function of three variables and suppose that

$$
\begin{equation*}
w=f(x-y, y-z, z-x) \text {, show that } \frac{\partial \mathrm{w}}{\partial \mathrm{x}}+\frac{\partial \mathrm{w}}{\partial \mathrm{y}}+\frac{\partial \mathrm{w}}{\partial \mathrm{z}}=0 \tag{7}
\end{equation*}
$$

Module-III

15 a) Find the area bounded by the x-axis, $y=2 x, x+y=1$.
b) Change the order of integration and hence evaluate $\int_{0}^{1} \int_{x^{2}}^{2-x} d y d x$

16 a) Find the volume bounded by the cylinder $x^{2}+y^{2}=9$ and the planes $y+z=3$ and $z=0$
b) Find the mass and centre of gravity of the lamina in the first quadrant bounded by the circle $x^{2}+y^{2}=1$ and the coordinate planes with density function $x y$.

Module-IV

17
a) Test the convergence $i) \sum_{k=1}^{\infty} \frac{k(k-1)}{(k+1)(k+2)(k+3)} \quad$ ii) $\sum_{k=1}^{\infty}\left(\frac{k+2}{2 k-1}\right)^{k}$
b) Test whether the following series is absolutely convergent or conditionally convergent. $\sum_{k=1}^{\infty} \frac{(-1)^{k}}{\sqrt{k(k+1)}}$
18
a) Test the convergence of the series $1+\frac{1.3}{1.2}+\frac{1.3 .5}{1.2 .3}+\frac{1.3 .5 .7}{1.2 .3 .4}+\ldots$
b)

Test the convergence:
(i) $\sum_{k=1}^{\infty} \frac{2}{3^{k}+5}$
(ii) $\sum_{k=1}^{\infty}(-1)^{k+1}\left(\frac{k}{2 k+3}\right)$

Module-V

19
a) Find the Fourier series of $f(x)=\left\{\begin{array}{l}1+\frac{2 x}{\pi},-\pi<x<0 \\ 1-\frac{2 x}{\pi}, 0<x<\pi\end{array}\right.$
b) Obtain Fourier series of e^{x} the interval $(-1,1)$

20 a) Find the Fourier series $f(x)=x^{2}-2$ in the interval $(-2,2)$
b) Find the Fourier cosine series of $f(x)=x^{2} \quad$ in $0<x<\pi$.

